Systems Engineering for Infrastructure Projects

Jon Shaw CEng, MBA, MSc(Eng), BEng (Hons), FIET, FIRSE
Engineering Director, Network Rail
Systems Engineering Approach

- Poor Scope Definition
- Working in Discipline Silo’s
- Poor Sharing of Lessons Learned and Best Practice
Example of Systems Learning Need

Activities

<table>
<thead>
<tr>
<th>Requirements Analysis</th>
<th>INCOSE Competence</th>
<th>BT Competence: Entrance Systems</th>
<th>BT Competence: Onboard Train Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Systems Thinking: Systems Concepts</td>
<td>Vehicle Integration</td>
<td>Vehicle Integration</td>
</tr>
<tr>
<td></td>
<td>Systems Thinking: Super System Capability Issues</td>
<td>Total System Integration</td>
<td>Total System Integration</td>
</tr>
<tr>
<td></td>
<td>Systems Thinking: Enterprise and Technology Environment</td>
<td>Requirements Management</td>
<td>Requirements Management</td>
</tr>
<tr>
<td></td>
<td>Holistic Lifecycle View: Determining and Managing Stakeholder Requirements</td>
<td>1C_06 Operability</td>
<td>1C_06 Operability</td>
</tr>
</tbody>
</table>

Vehicle Engineering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total System Integration (Kevin Bowry)</td>
<td>Functional Engineering (Mark Lowther)</td>
<td>Requirements Management (Kevin Bowry)</td>
</tr>
<tr>
<td></td>
<td>1C_06 Operability (Kevin Bowry)</td>
<td>1C_06 Operability (Kevin Bowry)</td>
<td>Requirements Management (Kevin Bowry)</td>
</tr>
</tbody>
</table>

Systems Integration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4S_09 Onboard Train Control</td>
<td>ATC/ATP Integration (Kevin Bowry)</td>
<td>Conventional Train Control (Mark Lowther)</td>
</tr>
<tr>
<td></td>
<td>4S_12 Exterior Door Systems</td>
<td>Doors (Heath Caddy)</td>
<td>4S_09 Onboard Train Control</td>
</tr>
<tr>
<td></td>
<td>2F_12 Train to Wayside Comms (Mark Lowther)</td>
<td>2F_09 Train Control (Mark Lowther)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2F_14 Exterior Doors & Step Systems (Heath Caddy)</td>
<td>2F_10 TCMS (Mark Lowther)</td>
<td></td>
</tr>
</tbody>
</table>

Cab & Saloon Systems/Mechanical

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2F_09 Train Control (Mark Lowther)</td>
<td>2F_10 TCMS (Mark Lowther)</td>
<td>2F_12 Train to Wayside Comms (Mark Lowther)</td>
<td>holisitic Lifecycle View: Systems Design: System Robustness</td>
</tr>
<tr>
<td>2F_12 Train to Wayside Comms (Mark Lowther)</td>
<td></td>
<td></td>
<td>holisitic Lifecycle View: Systems Design: System Robustness</td>
</tr>
</tbody>
</table>

Allocation and Design

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Knowledge</td>
<td>4S_09 Onboard Train Control</td>
<td>ATC/ATP Integration (Kevin Bowry)</td>
<td>Conventional Train Control (Mark Lowther)</td>
</tr>
<tr>
<td></td>
<td>4S_12 Exterior Door Systems</td>
<td>Doors (Heath Caddy)</td>
<td>4S_09 Onboard Train Control</td>
</tr>
<tr>
<td></td>
<td>2F_12 Train to Wayside Comms (Mark Lowther)</td>
<td>2F_09 Train Control (Mark Lowther)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2F_14 Exterior Doors & Step Systems (Heath Caddy)</td>
<td>2F_10 TCMS (Mark Lowther)</td>
<td></td>
</tr>
</tbody>
</table>

A better railway for a better Britain
Systems Engineering Capability

<table>
<thead>
<tr>
<th>Single Integrated Engineering Competency Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialist Professional Discipline Competencies</td>
</tr>
<tr>
<td>e.g. Civil Engineering, Signalling, Telecoms, Track, Traction Power, Eng Programme Delivery</td>
</tr>
</tbody>
</table>

Behavioural Competencies
- Drive for Results
- Initiative
- Teamwork
- Making Decisions
- Continuous Improvement

Cognitive & Enterprise Competencies
- Safety
- Ethics
- Problem Solving
- Innovation
Scope Definition

- New Requirements Management Policy Issued
- Mandates use of DOORS
- Training of 270 trainers complete, c3000 by end 2016
- Piloted on ECML & Thameslink
- Risk Assessment Process for Requirements Maturity
Engineering Lifecycle Developed
Technical Stage Gate Reviews

- Engineering Assurance Function
- Risk Based Approach
- Expert Peer Review from Across NR & External where Needed (inc. Suppliers, Maintenance, etc.)
- Technical Stage Gates identified in Engineering Lifecycle
- Supporting Checklists & Guidance
- Risk Assessment of Checklist Items not Fully Closed
- Piloted on Crossrail West & Heathrow ETCS

Has an asset condition report been completed issued with an allowance made in the programme for all special working arrangements identified?	Asset Condition Assessment Report (SICA): The purpose of this product is to record the existing condition of the assets which will be involved in the investment scheme. Asset Condition Report (Alterability): The purpose of this product is to record the existing condition of the assets which will be involved in the investment scheme for alterability (including but not limited to Power Supplies, Existing Transmission Systems, Data).
Have all Correlation Requirements been considered and programmed?	The purpose of the Correlation report is to confirm the status of the existing infrastructure, highlighting any deficiencies that may also need addressing.
Has an IDC process been agreed between all stakeholders?	The purpose of the IDC/IDR is to integrate all the multidisciplinary elements of design. Form B/Forms 2 & 3 - Final design: To certify the design in accordance with all statutory safety standards requirements. Form Bs (Forms 2&3 for Civils) are required to be integrated under IDC and IDR. Geotechnical Survey to reduce the risk of unexpected ground conditions increasing the cost of structural foundations and other work associated with signals and locations.
Has an agreed Design Interface Schedule or equivalent been agreed between all disciplines and populated to ensure timely availability of engineering	A Design Interface Schedule (DIS) or Give / Get Dates are defined so that all engineering disciplines are aware of the requirements of the interfacing designers and are then able to undertake design integration activities correctly i.e. IDC / IDR.
Interface Management

- Project Engineering Handbook to Provide Guidance
- Requirements Flowed Down from System to Sub-system to Component / Data
- Interface Matrices
- Interface Control Documents
- Interdisciplinary Design Reviews
- Interface Schedules
- Adopted on Thameslink Project

[Images of trains and interfaces]
New Product Reliability

Identify Core Sub-System Building Blocks (PBS) – *(Note: Will include Sub-system FMEAs)*

Component 1 – Standard Module: Demonstrate Proven Service History

Component 2 – New Module: Tech Readiness Level Risks

Component 3 – New Software Code: Tech Readiness Level Risks

Component 4 – New Software Code: Tech Readiness Level Risks

Product Sub-System Level FMEA

Identify all sub-system Interfaces

Combined Supplier-NR Reliability Risk & Op Register

Integrated V&V Plan (Supplier & NR) inc. Testing

Integrated Software Programme + Diagnostic

Prognostics / Condition Based Maintenance

Problem:

- Machine
- Environment
- Man
- Material
- Method

Why Analysis

- 5 Why Analysis

- 4 Why Analysis

- 3 Why Analysis

- 2 Why Analysis

- 1 Why Analysis

Analyze the root causes of the non-conformity and prioritize corrective actions to prevent future occurrences. Use the Fish Bone diagram to facilitate understanding the various factors contributing to the issue.
Summary

- Network Rail is Adopting a Systems Engineering Approach to Project Delivery
- New Engineering Lifecycle Developed
- ‘Hard’ Technical Stage Gates with Risk Assessment
- New Requirements Management Policy
- Interface Management Guidance Created
- New Competency Framework including INCOSE